Relación entre la expresión proteínas inhibidoras de complemento y la eficacia de anticuerpos terapéuticos en cáncer colorrectal

Autores/as

  • Sofía Álvarez Lorenzo Facultad de Química, Facultad de Medicina, Departamento de Farmacología, UNAM
  • Nohemí Salas Jazmín Facultad de Medicina, Departamento de Farmacología, UNAM. https://orcid.org/0000-0002-9870-8650

DOI:

https://doi.org/10.58713/rf.v1i2.1

Palabras clave:

Cáncer colorrectal, Proteínas de membrana, Reguladores de complemento, CD46, CD55, CD59, Anticuerpos terapéuticos

Resumen

El cáncer colorrectal ocupa el segundo lugar en mortalidad a nivel nacional y el tercero en incidencia a nivel mundial. Su tratamiento involucra cirugía, radioterapia y combinaciones de agentes citotóxicos y dirigidos. El uso de anticuerpos como terapia dirigida ha incrementado la supervivencia de los pacientes; sin embargo, su eficacia es limitada por la presencia de proteínas de membrana reguladoras del complemento (mRCP), tales como CD55, CD46 y CD59. Estas proteínas inhiben la citotoxicidad dependiente del complemento y favorecen la progresión tumoral en pacientes con cáncer colorrectal. El proporcionar un panorama que describa e integre evidencia sobre la función y relevancia de estas proteínas en cáncer colorrectal permitirá tener herramientas que mejoren el diagnóstico y el tratamiento. Usando las plataformas UALCAN, XENA y GEPIA, se analizó la expresión de las mRCP y su impacto en la supervivencia. Luego se integró con

información reportada sobre la relación entre las mRCP, la eficacia terapéutica y las medidas exploradas hasta la actualidad para su estudio e inhibición. La sobreexpresión significativa de CD46 en el tejido tumoral correlaciona con una menor supervivencia libre de enfermedad, sugiriendo una función relevante en el desarrollo y progresión del cáncer colorrectal. Aun cuando la expresión de CD55 y CD59 es estadísticamente diferencial entre el tejido tumoral y no tumoral, no parece tener impacto en la supervivencia. La inhibición de las mRCP podría beneficiar a los pacientes al aumentar la eficacia de los anticuerpos terapéuticos y evitar la progresión del cáncer.

Citas

Lu R-M, Hwang Y-C, Liu I-J, Lee C-C, Tsai H-Z, Li H-J, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci [Internet]. 2020 Dec 2;27(1):1. Available from: https://jbiomedsci.biomedcentral.com/ articles/10.1186/s12929-019-0592-z

Golay J, Taylor RP. The Role of Complement in the Mechanism of Action of Therapeutic Anti-Cancer mAbs. Antibodies [Internet]. 2020 Oct 28;9(4):58. Available from: https://www. mdpi.com/2073-4468/9/4/58

Kolev M, Markiewski MM. Targeting complement-mediated immunoregulation for cancer immunotherapy. Semin Immunol [Internet]. 2018 Jun;37:85–97. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S1044532317301367

Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol [Internet]. 2020 Jun 22;38(6):675–8. Available from: http://www.nature.com/ articles/s41587-020-0546-8

Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia [Internet]. 2017 Aug;19(8):649–58. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S1476558617301793

Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res [Internet]. 2017 Jul 3;45(W1):W98–102. Available from: https://academic.oup. com/nar/article-lookup/doi/10.1093/ nar/gkx247

Elvington M, Liszewski MK, Atkinson JP. CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies [Internet]. 2020 Nov 2 [cited 2021 May 24];9(4):59. Available from: www.mdpi. com/journal/antibodies

Dho SH, Lim JC, Kim LK. Beyond the Role of CD55 as a Complement Component. Immune Netw [Internet]. 2018;18(1):1–13. Available from: https://immunenetwork.org/DOIx. php?id=10.4110/in.2018.18.e11

Liszewski MK, Atkinson JP. Membrane Cofactor Protein [Internet]. Second Edi. Scott Barnum TS, editor. The Complement FactsBook: Second Edition. United Kingdom: Sara Tenney Elsevier; 2018. 271–281 p. Available from: http:// dx.doi.org/10.1016/B978-0-12-810420-0.00026-2

Zhou Y, Chu L, Wang Q, Dai W, Zhang X, Chen J, et al. CD59 is a potential biomarker of esophageal squamous cell carcinoma radioresistance by affecting DNA repair. Cell Death Dis [Internet]. 2018 Sep 30;9(9):887. Available from: http://www.nature.com/ar ticles/ s41419-018-0895-0

Wilczek E, Wasiutynski A, Sladowski D, Wilczynski GM, Gornicka B. The expression of membranous complement inhibitors CD46, CD55 and CD59 in the primary and metastatic colon cancer cell lines derived from the same patient. Cent Eur J Immunol [Internet]. 2013;4(4):549–55. Available from: http://www.termedia.pl/doi/10.5114/ ceji.2013.39774

Bao D, Zhang C, Li L, Wang H, Li Q, Ni L, et al. Integrative Analysis of Complement System to Prognosis and Immune Infiltrating in Colon Cancer and Gastric Cancer. Front Oncol [Internet]. 2021 Feb 3;10. Available from: https://www.frontiersin.org/articles/10.3389/ fonc.2020.553297/full

Watson NFS, Durrant LG, Madjd Z, Ellis IO, Scholefield JH, Spendlove I. Expression of the membrane complement regulatory protein CD59 (protectin) is associated with reduced survival in colorectal cancer patients. In: Cancer Immunology, Immunotherapy [Internet]. Springer; 2006 [cited 2021 May 24]. p. 973–80. Available from: https://link. springer.com/article/10.1007/s00262- 005-0055-0

Gelderman KA, Tomlinson S, Ross GD, Gorter A. Complement function in mAb-mediated cancer immunotherapy. Trends Immunol [Internet]. 2004 Mar;25(3):158–64. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S1471490604000262

Dho S, Cho E, Lee J, Lee S, Jung S, Kim L, et al. A novel therapeutic anti-CD55 monoclonal antibody inhibits the proliferation and metastasis of colorectal cancer cells. Oncol Rep [Internet]. 2019 Sep 26;42(6):2686–93. Available from: http://www.spandidos-publications. com/10.3892/or.2019.7337

Gelderman KA, Kuppen PJK, Bruin W, Fleuren GJ, Gorter A. Enhancement of the complement activating capacity of 17-1A mAb to overcome the effect of membrane-bound complement regulatory proteins on colorectal carcinoma. Eur J Immunol [Internet]. 2002 Jan;32(1):128–35. Available from: https://onlinelibrary. wiley.com/doi/10.1002/1521- 4141(200201)32:1%3C128::AIDIMMU128%3E3.0.CO;2-P

Li L, Spendlove I, Morgan J, Durrant LG. CD55 is over-expressed in the tumour environment. Br J Cancer [Internet]. 2001 Jan 5;84(1):80–6. Available from: http:// www.nature.com/doifinder/10.1054/ bjoc.2000.1570

Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol [Internet]. 2019 May 21 [cited 2021 May 24];10:1074. Available from: https:// www.frontiersin.org/article/10.3389/ fimmu.2019.01074/full

Maciejczyk A, Szelachowska J, Szynglarewicz B, Szulc R, Szulc A, Wysocka T, et al. CD46 Expression is an Unfavorable Prognostic Factor in Breast Cancer Cases. Appl Immunohistochem Mol Morphol [Internet]. 2011 Dec;19(6):540–6. Available from: https://journals.lww.com/00129039- 201112000-00012

Modest DP, Pant S, Sartore-Bianchi A. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer [Internet]. 2019 Mar;109(6 C):70–83. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/30690295

Lu Z, Zhang C, Cui J, Song Q, Wang L, Kang J, et al. Bioinformatic analysis of the membrane cofactor protein CD46 and microRNA expression in hepatocellular carcinoma. Oncol Rep [Internet]. 2014 Feb [cited 2021 May 24];31(2):557–64. Available from: https://www.spandidos-publications. com/10.3892/or.2013.2877

Christy JM, Toomey CB, Cauvi DM, Pollard KM. Decay-Accelerating Factor [Internet]. Second Edi. Scott Barnum TS, editor. The Complement FactsBook. United Kingdom: Sara Tenney Elsevier; 2018. 261–270 p. Available from: http:// dx.doi.org/10.1016/B978-0-12-810420-0.00025-0

Ouyang Q, Zhang L, Jiang Y, Ni X, Chen S, Ye F, et al. The membrane complement regulatory protein CD59 promotes tumor growth and predicts poor prognosis in breast cancer. Int J Oncol [Internet]. 2016 May;48(5):2015–24. Available from: https://www.spandidos-publications. com/10.3892/ijo.2016.3408

Durrant LG, Chapman MA, Buckley DJ, Spendlove I, Robins RA, Armitage NC. Enhanced expression of the complement regulatory protein CD55 predicts a poor prognosis in colorectal cancer patients. Cancer Immunol Immunother [Internet]. 2003 Oct 1;52(10):638–42. Available from: http://link.springer.com/10.1007/ s00262-003-0402-y

Thorsteinsson L, O’Dowd GM, Harrington PM, Johnson PM. The complement regulatory proteins CD46 and CD59, but not CD55, are highly expressed by glandular epithelium of human breast and colorectal tumour tissues. APMIS [Internet]. 1998 Jul;106(7–12):869–78. Available from: https://onlinelibrary.wiley. com/doi/10.1111/j.1699-0463.1998. tb00233.x

Mikesch J-H, Schier K, Roetger A, Simon R, Buerger H, Brandt B. The Expression and Action of Decay-Accelerating Factor (CD55) in Human Malignancies and Cancer Therapy. Anal Cell Pathol [Internet]. 2006 Jan 1;28(5–6):223–32. Available from: https://www.hindawi. com/journals/acp/2006/814816/abs/

Morgan P. Cd59 [Internet]. Second Edi. Scott Barnum TS, editor. The Complement FactsBook: Second Edition. United Kingdom: Sara Tenney; 2018. 361–367 p. Available from: https://www. sciencedirect.com/science/article/pii/ B9780128104200000341

Zhang R, Liu Q, Liao Q, Zhao Y. CD59: a promising target for tumor immunotherapy. Futur Oncol [Internet]. 2018 Apr;14(8):781–91. Available from: https://www.futuremedicine.com/ doi/10.2217/fon-2017-0498

Hussein NH, Amin NS, El Tayebi HM. GPI-AP: Unraveling a New Class of Malignancy Mediators and Potential Immunotherapy Targets. Front Oncol [Internet]. 2020 Dec 4 [cited 2021 Jun 10];10:2490. Available from: https:// www.frontiersin.org/articles/10.3389/ fonc.2020.537311/full

Parsons ES, Stanley GJ, Pyne ALB, Hodel AW, Nievergelt AP, Menny A, et al. Single-molecule kinetics of pore assembly by the membrane attack complex. Nat Commun [Internet]. 2019 Dec 6;10(1):2066. Available from: http:// www.nature.com/articles/s41467-019- 10058-7

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet [Internet]. 2019 Oct 19 [cited 2021 Jun 15];394(10207):1467–80. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0140673619323190

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin [Internet]. 2018 Nov;68(6):394–

Available from: http://doi.wiley. com/10.3322/caac.21492

Kashida H, Takeuchi T, Kurahashi T, Fukami N, Yamamura F, Ohtsuka K, et al. Diagnosis and Treatment of T1 Colorectal Cancer. Gastrointest Endosc [Internet]. 2004 Apr;59(5):P276. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S0016510704012209

Granados-Romero JJ, ValderramaTreviño AI, Contreras-Flores EH, BarreraMera B, Herrera Enríquez M, Uriarte-Ruíz K, et al. Colorectal cancer: a review. Int J Res Med Sci [Internet]. 2017 Oct 27;5(11):4667. Available from: http:// www.msjonline.org/index.php/ijrms/ article/view/3905

Müller MF, Ibrahim AEK, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch [Internet]. 2016 Aug 20;469(2):125–

Available from: http://link.springer. com/10.1007/s00428-016-1956-3

Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer [Internet]. Vol. 5, Signal Transduction and Targeted Therapy. Springer Nature; 2020 [cited 2021 Jun 15]. p. 1–30. Available from: https://doi. org/10.1038/s41392-020-0116-z

García-Foncillas J, Sunakawa Y, Aderka D, Wainberg Z, Ronga P, Witzler P, et al. Distinguishing Features of Cetuximab and Panitumumab in Colorectal Cancer and Other Solid Tumors. Front Oncol [Internet]. 2019 Sep 20;9:849. Available from: https://www.frontiersin.org/ article/10.3389/fonc.2019.00849/full

Zhuang H, Xue Z, Wang L, Li X, Zhang N, Zhang R. Efficacy and immune mechanisms of cetuximab for the treatment of metastatic colorectal cancer. Clin Oncol Cancer Res [Internet]. 2011 Dec 24;8(4):207–14. Available from: http://link.springer.com/10.1007/ s11805-011-0582-8

Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy. In: International Review of Cell and Molecular Biology [Internet]. Elsevier Inc.; 2017. p. 289–383. Available from: https://linkinghub.elsevier.com/ retrieve/pii/S1937644816301095

Rosner T, Kahle S, Montenegro F, Matlung HL, Marco Jansen JH, Evers M, et al. Immune effector functions of human IgG2 antibodies against EGFR. Mol Cancer Ther [Internet]. 2019 Jan 1 [cited 2021 Sep 29];18(1):75–88. Available from: https://pubmed.ncbi. nlm.nih.gov/30282813/

Vennepureddy A, Singh P, Rastogi R, Atallah J, Terjanian T. Evolution of ramucirumab in the treatment of cancer – A review of literature. J Oncol Pharm Pract [Internet]. 2017 Oct 15;23(7):525–39. Available from: http://journals.sagepub. com/doi/10.1177/1078155216655474

Wilczek E, Wasiutynski A, Wilczynski GM, Sladowski D, Gornicka B. Comparison of the expression of complement regulatory proteins CD46, CD55 and CD59 in primary colon cancer and synchronous/ metachronous liver metastases. Cent Eur J Immunol [Internet]. 2013;4(4):543–8. Available from: http://www.termedia. pl/doi/10.5114/ceji.2013.39773

Sivasankar B, Longhi MP, Gallagher KME, Betts GJ, Morgan BP, Godkin AJ, et al. CD59 Blockade Enhances AntigenSpecific CD4 + T Cell Responses in Humans: A New Target

Descargas

Publicado

2022-07-01

Número

Sección

Artículos de investigación original