Toxicidad de nanopartículas de óxido de zinc y óxido cobre en células del sistema excretor

Authors

DOI:

https://doi.org/10.58713/rf.v1i1.6

Keywords:

Sistema excretor, Nanotoxicología, Nanopartículas

Abstract

Esta revisión resume la literatura sobre la toxicidad en células epiteliales de mamíferos de las nanopartículas (NPs) de óxido de zinc (ZnO) y óxido de cobre (CuO) publicada entre 2013 y parte del 2021. Los efectos nanotoxicológicos de las NPs ZnO y NPs CuO en las células dependen de la composición química de la nanopartícula, de su tamaño, y también, de la estructura y función de las células. El aumento del uso de las NPs ZnO y NPs CuO en la industria farmacéutica, cosmética, ambiental y alimentaria, lo que promueve que los seres humanos y otros organismos se encuentren ante una exposición a las NPs indeseada o incidental silenciosa. Las NPs pueden llegar al sistema circulatorio por vía inhalatoria o por ingestión para posteriormente ser excretadas por el hígado y riñón. La exposición aguda de las células epiteliales de hígado y riñón a las NPs produce estrés oxidante, daño mitocondrial, alteraciones en el ciclo celular y respuestas inflamatorias que conducen a las células a una muerte apoptótica.

References

Chan WCW. Bionanotechnology progress and advances. Biol Blood Marrow Transplant. 2006;12(1).

Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015 Oct;73(1).

Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016;3(1).

Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: The need of the hour. Toxicol Appl Pharmacol. 2012;258(2).

Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87(7).

Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res. 2016;172(1).

Chen A, Feng X, Sun T, Zhang Y, An S, Shao L. Evaluation of the effect of time on the distribution of zinc oxide nanoparticles in tissues of rats and mice: a systematic review. IET Nanobiotechnology. 2016;10(3).

Bugata LSP, Pitta Venkata P, Gundu AR, Mohammed Fazlur R, Reddy UA, Kumar JM, et al. Acute and subacute oral toxicity of copper oxide nanoparticles in female albino Wistar rats. J Appl Toxicol. 2019;39(5).

Hassanen EI, Tohamy A, Issa MY, Ibrahim MA, Farroh KY, Hassan AM. Pomegranate juice diminishes the mitochondria-dependent cell death and NF-kB signaling pathway induced by copper oxide nanoparticles on liver and kidneys of rats. Int J Nanomedicine. 2019;14.

El Bialy BE, Hamouda RA, Abd Eldaim MA, El Ballal SS, Heikal HS, Khalifa HK, et al. Comparative toxicological effects of biologically and chemically synthesized copper oxide nanoparticles on mice. Int J Nanomedicine. 2020;15.

Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12).

Jiang J, Pi J, Cai J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg Chem Appl. 2018;2018.

Tang KS. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci. 2019;239.

Rodhe Y, Skoglund S, Odnevall Wallinder I, Potácová Z, Möller L. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicol In Vitro. 2015;29(7).

Li Y, Hong M, Lin Y, Bin Q, Lin Z, Cai Z, et al. Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. Chem Commun. 2012;48(52).

Fernando Guzmán. Hecho en CU: Cubrebocas antimicrobiano. Gaceta UNAM [Internet]. 2021;0188:1–6. Disponible en: https://www.gaceta.unam.mx/hecho-en-cu-cubrebocas-antimicrobiano/

Dykes P. Increase in skin surface elasticity in normal volunteer subjects following the use of copper oxide impregnated socks. Skin Res Technol [Internet]. 2015;21(3):272–7. Available from: https://onlinelibrary.wiley.com/doi/10.1111/srt.12187

Kim K-B, Kim YW, Lim SK, Roh TH, Bang DY, Choi SM, et al. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J Toxicol Environ Health Part B [Internet]. 2017;20(3):155

–82. Available from: https://www.tandfonline.com/doi/full/10.1080/10937404.2017.1290516

Liu Z, Wang C, Hou J, Wang P, Miao L, Lv B, et al. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters. Environ Sci Pollut Res. 2020;25(31).

Stankic S, Suman S, Haque F, Vidic J. Pure and multi-metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology. 2016;14(1).

Li M, Zou P, Tyner K, Lee S. Physiologically Based Pharmacokinetic (PBPK) Modeling of Pharmaceutical Nanoparticles. AAPS J [Internet]. 2017;19(1):26–42. Available from: http://link.springer.com/10.1208/s12248-016-0010-3

Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Crit Rev Toxicol. 2016;46(6).

Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44(23).

V.G. R, P.V. M. Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells. Colloids Surfaces B Biointerfaces. 2017;157.

Demir E, Creus A, Marcos R. Genotoxicity and DNA repair processes of zinc oxide nanoparticles. J Toxicol Environ Health Part A. 2014;77(21).

Uzar NK, Abudayyak M, Akcay N, Algun G, Özhan G. Zinc oxide nanoparticles induced cyto- and genotoxicity in kidney epithelial cells. Toxicol Mech Methods. 2015;25(4).

Kononenko V, Repar N, Marušič N, Drašler B, Romih T, Hočevar S, et al. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters. Toxicol In Vitro. 2017;40.

Thongkam W, Gerloff K, van Berlo D, Albrecht C, Schins RPF. Oxidant generation, DNA damage and cytotoxicity by a panel of engineered nanomaterials in three different human epithelial cell lines. Mutagenesis. 2017;32(1).

Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, et al. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 2013;14(1).

Zhang C, Liu Z, Zhang Y, Ma L, Song E, Song Y. “Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis. 2020;11(3).

Reddy ARN, Lonkala S. In vitro evaluation of copper oxide nanoparticle-induced cytotoxicity and oxidative stress using human embryonic kidney cells. Toxicol Ind Health. 2019;35(2).

Assadian E, Zarei MH, Gilani AG, Farshin M, Degampanah H, Pourahmad J. Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biol Trace Elem Res. 2018;184(2).

Wang X, Chang CH, Jiang J, Liu X, Li J, Liu Q, et al. Mechanistic differences in cell death responses to metal-based engineered nanomaterials in Kupffer cells and hepatocytes. Small. 2020;16(21).

Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R. Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochem Res. 2016;41(11).

Hufnagel M, Neuberger R, Wall J, Link M, Friesen A, Hartwig A. Impact of differentiated macrophage-like cells on the transcriptional toxicity profile of CuO nanoparticles in co-cultured lung epithelial cells. Int J Mol Sci. 202

Published

2022-01-01

Issue

Section

Artículos de investigación original