Nanopartículas y neurodegeneración

Autores/as

  • Lorena Velázquez Álvarez Servicio de Neurología. Hospital General de México
  • José de Jesús Rivera Sánchez Servicio de Geriatría. Hospital General de México

DOI:

https://doi.org/10.58713/rf.v1i1.5

Resumen

Las enfermedades neurodegenerativas son en la actualidad las patologías mas discapacitantes que afectan a la población mundial; posicionándose en años recientes entre las primeras cinco causas de muerte, sólo después de las enfermedades cardiacas, el cáncer y el infarto cerebral. Al menos un siglo ha transcurrido desde el descubrimiento de las enfermedades neurodegenerativas, y aún se necesita mucha investigación para tener pruebas diagnósticas y tratamientos efectivos. En el informe de carga global de enfermedades, se estima que los trastornos neurológicos neurodegenerativos causaron alrededor de 250 millones de años de vida perdidos por discapacidad, lo que representa el 10.2% de años de vida perdidos por discapacidad mundiales, y 9 millones (16.8%) de las muertes globales lo cual lo convierte en un problema de salud publica mundial (1).

Citas

Feigin VL, Abajobir AA, Abate KH, AbdAllah F, Abdulle AM, Abera SF, et al. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology. 2017; 16(11): 877-897.

Przedborski S, Vila M, Jackson-Lewis V. Series Introduction: Neurodegeneration: What is it and where are we? Journal of Clinical Investigation. 2003; 111(1): 3–10.

Cano A, Sánchez-López E, Ettcheto M, López-Machado A, Espina M, Souto E B, et al. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine. 2020.

Tan EK, Srivastava AK, Arnold WD, Singh MP, Zhang Y. Neurodegeneration: Etiologies and New Therapies. BioMed Research International. 2015; 1–2.

Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016; 539(7628): 180–186.

Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiology of Disease. 2010; 37(1): 13–25.

Wolff A, Antfolk M, Brodin B, Tenje M. In Vitro Blood–Brain Barrier Models—An Overview of Established Models and New Microfluidic Approaches. Journal of Pharmaceutical Sciences. 2015; 104(9): 2727–2746.

Tam VH, Sosa C, Liu R, Yao N, Priestley RD. Nanomedicine as a non-invasive strategy for drug delivery across the blood-brain barrier. International Journal of Pharmaceutics. 2016; 515(1-2): 331–342.

Azad TD, Pan J, Connolly ID, Remington A, Wilson CM, Grant GA. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurgical Focus. 2015; 38(3): E9.

Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials. 2018; 1801362.

Yang C, Hawkins KE, Dore S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. American Journal of Physiology-Cell Physiology. 2018.

Pezeshgi H, Janmaleki M, Novin M, Saliba J, El-hajj F. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. Journal of Controlled Release. 2018; 273: 108–130.

Zenaro E, Piacentino G, Constantin G. The blood–brain barrier in Alzheimer’s disease. Neurobiology of Disease. 2017; 107: 41–56.

Palmer A. The role of the blood-brain barrier in neurodegenerative disorders and their treatment. Journal of Alzheimer's Disease. 2011; 24(4): 643–656.

Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent Advancements of Nanomedicine in Neurodegenerative Disorders Theranostics. Advanced Functional Materials. 2020; 2003054.

Giovanni T, Duskey JT, Jörg K. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opinion on Drug Delivery. 2019.

Zhang P, Zhang L, Qin Z, Hua S, Guo Z, Chu C, et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Advanced Materials. 2018; 30:1705350.

Tripathy N, Ahmad R, Khang G. Inorganic Nanotheranostics: Strategy development and applications in Drug Delivery Nanosystems for Biomedical Applications. Amsterdam: Elsevier. 2018; 377–419.

Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational therapeutic target for

personalized cancer treatment. Drug Resistance Updates. 2014; 17: 89–95.

Yuan M, Wang Y, Qin YX. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomedicine. 2018; 14: 1337–1347.

Kim WS, Kågedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimer's Research & Therapy. 2014; 6:73.

Vio V, Jose Marchant M, Araya E, Kogan MJ. Metal nanoparticles for the treatment and diagnosis of neurodegenerative brain diseases. Current Pharmaceutical Design. 2017; 23(13):1916–1926.

Vissers C, Ming G, Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Advanced Drug Delivery Reviews. 2019.

Kong SD, et al. Magnetic targeting of nanoparticles across the intact blood-brain barrier. Journal of Controlled Release. 2012; 164 (1): 49–57.

Descargas

Publicado

2022-01-01

Número

Sección

Artículos de investigación original